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Wilson loops are calculated using Monte Carlo simulations for pure U(2) gauge theory on a 
64 lattice. The loops appear to contain an area law piece in both the high and low temperature 
regions. The string tension is discontinuous at/~ =/3c, where/~c is the critical inverse temperature. 
This suggests that the first-order phase transition in U(2) gauge theory is not a deconfining phase 
transition. The determinant of the Wilson loop, however, extracts the U(1) part of the theory and 
appears to lose the area law at low temperature. 

In a recent paper [1], a first-order phase transition was found in pure U(2) gauge 

theory in four space-time dimensions. In the present paper, we examine the Wilson 
loops in order to further study the nature of this U(2) transition. At low temperature 
the SU(2) and U(1) parts of the theory should decouple. Thus the physical parts 
of the loops should mimic SU(2) up to a possible renormalization of the coupling. 

To extract the U(1) part, we consider the determinant of the Wilson loops, as 
suggested by Green and Samuel [2]. This should obey a perimeter law and match 
pure U(1) loops at low temperature, again with a renormalization of the coupling. 

We define the system in a hypercubical lattice of four euclidean space-time 

dimensions [3, 4]. With any link on the lattice joining nearest-neighbor lattice sites 
labelled by i and ], we associate a matrix Ui~ of the U(N) gauge group such that 

Uii = exp (iOq)Uii, 

where O~ i is an N × N unitary unimodular matrix of SU(N) and 0 is the angle 
associated with compact U(1). When the angle O~i sweeps over the interval [0, 27r/N] 
and Oij sweeps over SU(N), the U(N) gauge group manifold is covered. We require 
that the reverse path gives the inverse group element, i.e., 

Uji = ( Uij ) -1. 

The partition function is given by 

Z(/3) = I (l~.,]-I~ dUq)exp  ( - /3S[U]) ,  
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where/3  is the inverse tempera ture  which is related to the bare coupling constant 

go by /3  = 2Nigh. In the above integral, the measure is the normalized invariant 
Haar  measure for the group. We define the action S as a sum over  all unoriented 
plaquettes such that 

$ [ U ] = ~ S [ ] = ~ ( 1 - 1 R e T r  UD),  

where U[] is the product of link variables around a plaquette. We consider only a 
single coupling here, although since the U(1) and SU(N) pieces decouple at large 
/3 we could have separate couplings for each. This could be accomplished by adding 
a term proport ional  to the determinant  of U[] to the action. At this point we 
specialize to N = 2. Periodic boundary conditions were used throughout our calcula- 
tions. Statistical equilibrium for the lattice was achieved by means of the method 
of Metropolis et al. [5]. 

On the lattice, we define the Wilson loop [6] by the expectation value 

W(L J )  = ½<Re Tr Uc) ,  

where C is a closed contour of rectangular dimensions I and J and Uc is a product  
of the link variables around the contour C. The leading-order high- temperature  
expansion for the Wilson loop is 

w(L ])  = (1/3).. (1) 

For large loops, we assume the Wilson loop behaves as 

W - e x p ( - A  - B .  a r e a -  C • per imeter ) ,  

where, the parameters  A, B and C are functions of/3. When this behavior applies, 
the string tension C is evaluated by forming the quantity 

[<1 w(t, J)l><l w ( i  - 1, J - 1)l)] 
X<I, J ) = - I n  I_(~- W(/, ~ - -  1 ) ) ~ i - ~ f f J ~ / "  <2) 

The leading-order high-temperature  expansion for the string tension is 

x(L J )  = - I n  (~/3), (3) 

which should hold over  a large part  of the high- temperature  region. Even when 
the area law does not dominate,  the ratios in eq. (2) are useful because the divergent 
per imeter  piece is cancelled. As argued in ref. [7] these physical ratios can serve 
to compare  different formulations of the same theory. 

Fig. l a  shows the average action per plaquette as a function of the inverse 
tempera ture  on a 64 lattice. For these calculations, we first per formed 200 iterations 
through the lattice each with 20 Monte  Carlo upgrades per link. This equilibrates 
the space-t ime lattice. Then we averaged over the next 100 iterations through the 
lattice. Disordered starting lattices were usually used because it was established in 
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Fig. 1. (a) The average  action per p laquette  ( E )  for pure U(2)  gauge theory  on a 64 lattice as a funct ion  
of the inverse t emperature  /3. The  curves represent  the l ead ing-order  high and low temperature  
expans ions  of  ref. [1]. (b) The evolution of the average action per p laquette  (E)  for pure U(2)  gauge 
theory on a 6 ~ lattice as a funct ion  of  the n u m b e r  of  i terations through the lattice for mixed  phase  

starting lattices for various  values of the inverse temperature /3 .  

ref. [1] that 200 iterations through the lattice were sufficient to reach equilibrium. 
We departed from this procedure in the region 3.25 ~</3 ~< 3.40 where supercooling 
of our lattice was observed. For this range we carried out mixed phase [4] starting 
lattice runs where the fourth component  of the euclidean lattice, the time com- 
ponent, was split in two with the upper half of the link variables disordered and 
the lower half ordered. Our results in fig. la  agree well with fig. la  in ref. [1]. In 
the present fig. la  we also show the leading order high and low temperature 
expansions given in ref. [1]. In fig. lb  we show some mixed phase runs for the 
average action per plaquette near the critical inverse temperature. This diagram 
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Fig. 2. The Wilson loops W(I, J) for pure U(2) gauge theory on a 6 4 lattice as a function of the inverse 
t e m p e r a t u r e / 3 .  T h e  full  u p w a r d  t r i ang l e s  r e p r e s e n t  I = J = 1, the  full  circles r e p r e s e n t  I = 2, J = 1, the  

c rosses  r e p r e s e n t  1 = 3, J = 1, the  o p e n  circles r e p r e s e n t  I = J = 2, t he  full  d o w n w a r d  t r i ang le s  r e p r e s e n t  

! = 3, J = 2 a n d  the  full  s q u a r e s  r e p r e s e n t  I = J = 3. T h e  cu rves  r e p r e s e n t  t he  l e a d i n g - o r d e r  h i g h -  

t e m p e r a t u r e  e x p a n s i o n  of  eq.  (1). 

shows quite clearly that we are dealing with a first-order phase transition with a 
critical inverse temperature of /3c = 3.325 +0.050.  In fig. 2 we show the Wilson 
loops up to size 3 x3 .  We can see from fig. 2 that eq. (1) is quite well obeyed 
over most of the high-temperature region. 

The logarithmic ratios x(L J) ,  for (L J)  = (1, 1), (2, 2), (3, 2) and (3, 3) are shown 
as a function of the inverse tempera ture /3  in fig. 3a. Our results agree with the 
leading-order high-temperature expansion of eq. (2) up to /3~-0.8/3c. As /3 
approaches the critical inverse temperature,  the string tension decreases very rapidly 
by about one half an order of magnitude. Fig. 3b shows an expanded view of the 
string tension X(/, J )  for the range of inverse temperature [3.0, 3.9]. From fig. 3b, 
we can see that X(3, 3) decreases at the critical inverse temperature/3c by a factor 
of about five. The discontinuity in the string tension is clearly visible. 
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Fig. 4. A comparison of the string tension x(L J) as a function of the inverse temperature/3 for pure 
U(2) and SU(2) gauge theories on 6 4 lattices. The full (open) upward triangles represent I = J = 1, the 
full (open) circles represent I = J = 2 and the full (open) downward triangles represent I = 3, J = 2, for 

U(2) and SU(2), respectively. 

The  results for U(2)  should approach the results for SU(2)  [8] at large /3  where  
/3 may have to be  renormal ized  by an additive constant.  This is because  at large 
/3 the U(1)  variables should decouple  and w e  should be left with an SU(2)  theory.  
In fig. 4 w e  com p are  the X ratios for these  two  theories .  The  U(2)  results m i m i c  
those  of SU(2)  but with a shift of roughly 2 units in/3.  

Fo l lowing  a suggest ion of Green  and Samuel  [2], w e  may  be able to extract  the 
U(1)  string tens ion from the determinant  of the Wi l son  loop.  W e  calculated this 
de terminant  for each loop  cons idered as a 2 × 2 matrix in U(2) .  W e  then average 
over  all similar loops  in each configuration to give an average denoted  ([ lgZ(L J)l)- 
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Fig. 5. The average action per plaquette 1 - W(1, 1) for the U(1) component  of pure U(2) gauge theory 
on a 6 4 lattice as a function of the inverse temperature  B- The curve represents the leading-order high 

temperature  expansion of eq. (5). 

From these average determinants we constructed a new logarithmic ratio 

[<1 Y)l><l - 1, J -  1)I> l #(I, J)= - l n  [<]~, ~-  ~ ( F -  1 , - ~ J  " (4) 

If the U(1) part of the theory deconfines, then this quantity should not produce 
an envelope in weak coupling [9, 10]. 

In the high-temperature region, the determinant of a wilson loop is obtained by 
tiling the loop with pairs of plaquettes for U(2) and N-tuplets for U(N).  A 
straightforward analysis gives 

<1 ~Z(L J)]) = (1/32 -t- 0(/34))/J , (5) 

o r  

for U(2) and 

)?(L J)  = - l n  (3~/32) + O(/34), 

<l Ig'(/, J)]) = (/3u/(2UN! NN)) L~ +" • . ,  

(6) 

(7) 

for U(N).  
In fig. 5 we show the average determinant per plaquette 1 - if '(1, 1) as a function 

of the inverse temperature /3 on a 64 lattice. For these calculations, we used 
disordered starts for/3 < 3.00, mixed phase starts for 3.00 ~</3 ~< 4.00 and ordered 
starts for/3 > 4.00. As before, we first generated 200 iterations through the lattice 
and then averaged over the next 100 iterations through the lattice. We show the 
average determinants if '(/, J )  for (L J ) =  (1, 1), (2, 2), (3, 2) and (3, 3) in fig. 6. 
Here  we have also plotted the high-temperature expansion of eq. (5). 
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Fig. 6. The Wilson loops ff'(L J) for the U(1) component of pure U(2) gauge theory on a 6 4 lattice as 
a function of the inverse temperature/3. The full upward triangles represent 1 = J = 1, the full circles 
represent ! = 2, J = 1, the crosses represent I = 3, J = 1, the open circles represent I = J = 2, the full 
downward triangles represent I = 3, J = 2 and the full squares represent I = J = 3. The curves represent 

the leading-order high temperature expansion of eq. (5). 

In  fig. 7 we show the logari thmic ratios )((L J)  for (L J )  = (1, 1), (2, 2), (3, 2) and  

(3, 3) as a funct ion  of the inverse t empera tu re  /3. We  can see that the high- 

t empera tu re  expans ion  of eq. (6) is well obeyed  over most  of the h igh- t empera tu re  

region.  In  weak coupl ing these quant i t ies  decrease more  rapidly with loop size than 

seen for x ( L  J )  in fig. 3. In  part icular ,  the data  are consis tent  with the quan t i ty  

)? (/, J )  going to zero for increasing rec tangular  d imens ions  I and J. The  d e t e r m i n a n t  

of the loops, however ,  appears  to deconf ine  U(1) charges and  suggests a massless 

pho ton  at low tempera tu re .  
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